646550, Омская область, с. Знаменское, Знаменский район БОУ «Знаменская средняя школа» Знаменского муниципального района,

rest.\ \phase: +7 381 79 223 78, E-mail: znamensosh@yandex.ru

Узисия до от Видовенская организация от от от от

Робототехника EV-3

Рабочая программа

на 2024-2025 учебный год

Направленность: техническая

Целевая группа: дети

12-17 лет

Срок реализации: 108

часов

Автор-составитель: Винников А.А.

Пояснительная записка

Рабочая программа составлена в соответствие с Федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской «Развитие образовательной робототехники Федерации»; непрерывного IT-образования в Российской Федерации», утвержденной «Агентством инновационного развития» №172-P от 01.10.2014 (Программа создание условий направленна на ДЛЯ развития дополнительного образования детей в сфере научно-технического творчества, втом числе и в области робототехники.

Основным содержанием данного курса являются занятия по техническомумоделированию, сборке и программирования роботов.

Актуальность курса заключается в том, что он направлен на формирование творческой личности, живущей в современном мире. Технологические наборы LEGO MINDSTORMS EV3 ориентированы на изучение основных физических принципов и базовых технических решений, лежащих в основе всех современных конструкций и устройств.

На занятиях используются конструкторы наборов ресурсного набора серииLEGO MINDSTORMS EV3.

Используя персональный компьютер или ноутбук с программным обеспечением, элементы из конструктора, ученики могут конструировать управляемые модели роботов. Загружая управляющую программу в специальный микрокомпьютер, и присоединяя его к модели робота, учащиеся изучают и наблюдают функциональные возможности различных моделей роботов. Робот работает независимо от настольного компьютера, на котором была написана управляющая программа. Получая информацию от различных датчиков и обрабатывая ее, EV3 управляет работой моторов.

Итоги изученных тем подводятся созданием учениками собственных автоматизированных моделей, с написанием программ, используемых в своих проектах, и защитой этих проектов.

Курс «Робототехника» ориентирован на учащихся 6-11 классов. Рабочая программа рассчитана на 108 часов. Занятия проводятся 1 раз в неделю, 3 академических часа (45 мин) согласно учебному расписанию.

Цели и задачи курса

Цели курса:

- заложить основы алгоритмизации и программирования с использованием робота LEGO Mindstorms EV3;
- научить использовать средства информационных технологий, чтобы
 проводить исследования и решать задачи в межпредметной деятельности;
- заложить основы информационной компетентности личности, т.е. помочь обучающемуся овладеть методами сбора и накопления информации, современных технологий, их осмыслением, обработкой и практическим применением через урочную, внеурочную деятельность, систему дополнительного образования, в том числе с закреплением и расширением знаний по английскому языку.
- повысить качество образования через интеграцию педагогических и информационных технологий.

Задачи курса:

- научить конструировать роботов на базе микропроцессора EV3;
- научить работать в среде программирования;
- научить составлять программы управления Лего роботами;
- развивать творческие способности и логическое мышление обучающихся;
- развивать умение выстраивать гипотезу и сопоставлять с полученнымрезультатом;
- развивать образное, техническое мышление и умение выразить свой замысел;
- развивать умения работать по предложенным инструкциям по сборкемоделей;
- развивать умения творчески подходить к решению задачи;
- развивать применение знаний из различных областей знаний;
- развивать умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
- получать навыки проведения физического эксперимента;

- получить опыт работы в творческих группах;
- ведение инновационной, научно-исследовательской, экспериментальной и проектной деятельности в области робототехники.

Концепция курса

Концепция курса основана на необходимости разработки учебнометодического комплекса для изучения робототехники. Изучение робототехники имеет политехническую направленность дети конструируют механизмы, решающие конкретные задачи. Лего – технология на основе конструктора Mindstorms EV3 позволяет развивать навыки конструирования у детей всех возрастов, поэтому школы, не имеющие политехнического профиля, остро испытывают курсе робототехники потребность в И любых других курсах, развивающих научно-техническое творчество детей.

Процесс освоения, конструирования и программирования роботов выходит за рамки целей и задач, которые стоят перед средней школой, поэтому курс «Образовательная робототехника» является инновационным направлением в дополнительном образовании детей. Это позволяет ребенку освоить достаточно сложные понятия — алгоритм, цикл, ветвление, переменная. Робот, собранный из конструктора Лего, может стать одним из таких исполнителей. По сравнению с программированием виртуального исполнителя, Лего - робот вносит в решение задач элементы исследования и эксперимента, повышает мотивацию учащихся, что будет положительно оценено педагогом.

Методы обучения

- *Познавательный* (восприятие, осмысление и запоминание учащимися нового материала с привлечением наблюдения готовых примеров, моделирования, изучения иллюстраций, восприятия, анализа и обобщения демонстрируемых материалов);
- *Метод проектов* (при усвоении и творческом применении навыков и умений в процессе разработки собственных моделей)
- Систематизирующий (беседа по теме, составление систематизирующих таблиц, графиков, схем и т.д.)
- *Контрольный метод* (при выявлении качества усвоения знаний, навыкови умений и их коррекция в процессе выполнения практических заданий)
- Групповая работа (используется при совместной сборке моделей,

а также при разработке проектов)

Формы организации учебных занятий

- Урок лекция;
- Урок презентация;
- Практическое занятие;
- Урок соревнование;
- Выставка.

Планируемые результаты

Концепция курса «Образовательная робототехника» предполагает внедрение инноваций в дополнительное техническое образование учащихся. Поэтому основными планируемыми результатами курса являются:

- 1. Развитие интереса учащихся к роботехнике;
- 2. Развитие навыков конструирования роботов и автоматизированных систем;
- 3. Получение опыта коллективного общения при конструировании и соревнованиях роботов.

Тематическое планирование

$N_{\underline{0}}$	Тема	Количество
		часов
1.	Что такое робототехника. Роботы в нашей жизни. Понятие. Назначение.	3
2.	Виды роботов, применяемые в современном мире.	3
3.	Конструкторы LEGO Mindstorms EV3	3
4.	Как работать с инструкцией.	3
5.	Основные детали конструктора	3
6.	Символы. Терминология.	3
7.	Обзор библиотеки функций.	3
8.	Знакомство со средой программирования.	3
9.	Программирование. Программы wedo	3
10.	Конструирование.	3
11.	Проектирование моделей-роботов.	3
12.	Применение датчиков	3
13.	Устройство роботов.	3
14.	Первый робот и первая программа	3
15.	Микропроцессор EV3	3
16.	Сервомоторы.	3
17.	Подключение сервомоторов и датчиков.	3
18.	Меню выгрузки и загрузки.	3
19.	Датчик касания	3
20.	Датчик звука	3
21.	Датчик освещенности	3
22.	Датчик цвета	3
23.	Датчик расстояния	3
24.	Панель инструментов.	3
25.	Палитра команд.	3
26.	Передача и запуск программ.	3
27.	Сборка, программирование и испытание робота	3
28.	Тестирование робота.	3
29.	Проект «Мой уникальный робот»	3
30.	Выполнение проекта «Мой уникальный робот»	3
31.	Выполнение проекта «Мой уникальный робот»	3
32.	Выполнение проекта «Мой уникальный робот»	3
33.	Выполнение проекта «Мой уникальный робот»	3
34.	Устранение недостатков проекта «Мой уникальный робот»	3
35.	Соревнования роботов	3
36.	Презентация роботов. Защита проекта «мой уникальный робот»	3
	1 Jiiiikaibiibiii pooot//	

Итого	108

Содержание программы

Введение (3 ч.)

Поколения роботов. История развития робототехники.

Применение роботов. Развитие образовательной робототехники. Цели и задачикурса.

Робот LEGO Mindstorms EV3 (18 ч.)

Роботы LEGO: от простейших моделей до программируемых.

Появление роботов Mindstorms EV3 в России. Виды, артикулы, комплектация конструкторов, стоимость наборов.

Конструктор LEGO Mindstorms EV3 (21 ч.)

Конструкторы LEGO Mindstorms EV3, ресурсный набор. Основные детали конструктора. Микропроцессор EV3. Сервомоторы. Датчики. Подключение сервомоторов и датчиков. Меню. Программирование. Выгрузка и загрузка.

Датчики (18ч)

Датчик касания (Touch Sensor, подключение и описание). Датчик звука (Sound Sensor, подключение и описание). Датчик освещенности (Light Sensor, подключение и описание). Датчик цвета (Color Sensor, подключение и описание). Датчик расстояния (Ultrasonic Sensor, подключение и описание).

Программное обеспечение LEGO MINDSTORMS Education EV3 (15ч)

Программирование EV3 (6 ч.)

Установка программного обеспечения. Системные требования. Интерфейс. Самоучитель. Мой портал. Панель инструментов. Палитра команд. Рабочее поле. Окно подсказок. Панель конфигурации. Пульт управления роботом. Первые простые программы. Передача и запуск программ. Тестирование робота.

Первый робот и первая программа (30 ч)

Практическое занятие «Сборка, программирование и испытание первого робота»

Требования к знаниям и умениям учащихся

В результате обучения учащиеся должны ЗНАТЬ:

- правила безопасной работы;
- основные компоненты конструкторов ЛЕГО;
- конструктивные особенности различных моделей, сооружений имеханизмов;
- компьютерную среду, включающую в себя графический языкпрограммирования;
- виды подвижных и неподвижных соединений в конструкторе; основные приемы конструирования роботов;
- конструктивные особенности различных роботов;
- как передавать программы;
- как использовать созданные программы;
- самостоятельно решать технические задачи в процессе

конструирования роботов (планирование предстоящих действий, самоконтроль, применять полученные знания, приемы и опыт конструирования с использованием специальных элементов, и других объектов и т.д.);

- создавать реально действующие модели роботов при помощи специальных элементов по разработанной схеме, по собственному замыслу;
- создавать программы на компьютере для различных роботов;
- корректировать программы при необходимости;
- демонстрировать технические возможности роботов;

Уметь:

- работать с литературой, с журналами, с каталогами, в интернете (изучатьи обрабатывать информацию);
- самостоятельно решать технические задачи в процессе конструирования роботов (планирование предстоящих действий, самоконтроль, применятьполученные знания, приемы и опыт конструирования с использованием специальных элементов и т.д.);
- создавать действующие модели роботов на основе конструктора ЛЕГО;
- создавать программы на компьютере;
- передавать (загружать) программы;
- корректировать программы при необходимости;
- демонстрировать технические возможности роботов.

Межпредметные связи

No॒	Предметы,	Примеры межпредметных связей
	изучаемые	
	дополнительно	
1.		Расчеты:
	Математика	длины траектории;
		числа оборотов и угла оборота колес;
		передаточного числа.
		Измерения:
		радиуса траектории;
		радиуса колеса;
		длины конструкций и блоков.
2.	.a.	Расчеты:
	Физика	скорости движения;
		силы трения;
		силы упругости конструкций.
		<u>Измерения:</u>
		массы робота;
		освещенности;
		температуры;
		напряженности магнитного поля.
3.	Технология	Изготовление:
		дополнительных устройств и
		приспособлений (лабиринты, поля, горки
		и пр.);
		чертежей и схем;
		электронных печатных плат.
		Подключение:
		к мобильному телефону через Bluetooth.
4.	История	Знакомство:
		с этапами (поколениями) развития
		роботов;
		развитие робототехники в России,
		других странах.
		Изучение:
		первоисточников о возникновении
		терминов «робот», «робототехника»,
		«андроид» и др.

Способы оценивания достижений учащихся

Данный курс не предполагает промежуточной или итоговой аттестации учащихся. В процессе обучения учащиеся получают знания и опыт в области дополнительной дисциплины «Робототехника».

Оценивание уровня обученности школьников происходит по окончании курса, после выполнения и защиты индивидуальных проектов. Тем самым они формируют свое портфолио, готовятся к выбору своей последующей профессии, формируют свою политехническую базу.

Условия реализации программы

- Компьютерный класс 10 компьютеров
- Программное обеспечение LEGO MINDSTORMS Education EV3
- Наборы LEGO MINDSTORMS Education EV3
- Проектор
- Интерактивная доска
- USB-кабель

Список литературы

- 1. Книга «Первый шаг в робототехнику», Д.Г. Копосов.
- 2. Руководство «ПервоРобот. Введение в робототехнику»
- 3. Интернет pecypc http://wikirobokomp.ru. Сообщество увлеченных робототехникой.
- 4. Интернет pecypc http://www.mindstorms.su. Техническая поддержка для роботов.
- 5. Интернет pecypc http://www.nxtprograms.com. Современные модели роботов.
- 6. Интернет ресурс http://www.prorobot.ru. Курсы робототехники и LEGOконструирования в школе.
- 7. LEGO MINDSTORMS EV3 Software. Программное обеспечение для mindstorms EV3.